380 魔角
这些一层层“为什么”的追问,最终无一例外地都会交给量子物理来解答。
但量子物理自己似乎都还没完成对自己的定义。
《生物物理》的课前的教室中,李峥舒了口气,合上了书。
“这次,是真的高难度挑战了。”
“不如说是撒网赌博吧。”林逾静拖滚着电脑屏幕上的论文目录道,“每种似乎有可能超导的物质,都会被用各种方法撕扯和扭曲,然后放到低温环境里通电,一旦触发超导,这辈子就稳了的感觉……”
现代科学虽然还无法用抽象原理解释这件事,但科学工具已经精湛到观测其中每个电子的动向了。
研究发现,当电子过多或过少时,魔角石墨烯如同正常金属,其中的电子处于相互独立的状态。
然而当电子数量处于超导发生的临界点时,电子间突然发生强相互作用以及纠缠。
如同那句“要有光”一样,超导在这一时刻发生了。
随着“强相互作用”、“纠缠”这些名词的出现,对于这个现象的理论研究,也便到达了科学的边际。
“超导?”后方一个同学探过头来,“你们也玩那个游戏吗?不是冰+雷就能触发超导了么?”
两个人回过头,难以理解地看着那个同学。
虽然不知道他在说什么,但低温+通电=超导,似乎也有道理。
在两人的严肃审视下,那位同学很快缩了回去。
毫无疑问,这已经是量子物理探讨的事情了。
深入到这一步,李峥也逐渐意识到现代科研中一个滑稽的事实。
科学原理虽然止步良久,但科学实验却没有停下来的理由。
连把两层二维石墨烯扭转1.1°这种事都干得出来,可见实验物理已经误打误撞丧心病狂了多少年。
这当然是个伟大的发现,但只要在基本原理上无法解释这件事,那它也仅仅只是个发现。