5200小说网
会员书架
首页 >都市言情 >重生之奋斗在香江 > 第二百四十二章 磁王汝铁硼

第二百四十二章 磁王汝铁硼

上一页 章节目录 加入书签 下一页

做还是不做?当初凌世哲反复思考了很久都没有拿定主意,最后还是艾莉森和福斯特的坚持,才让凌世哲下定了决心研发稀土永磁电机,研发第三代列车动力牵引系统,即永磁牵引系统。

而钕铁硼的研发任务,交给了刚过而立之年的江志华身上。当然为了保证项目的顺利进行,凌世哲也开了金手指。

钕铁硼诞生于1982年,由日本住友特殊金属的佐川真人给意外发现,经过检测发现这块磁铁的磁能积(bhmax)大于钐钴磁铁,是全世界那时磁能积最大的物质。于是住友特殊金属开始研发钕铁硼磁性材料,不久用粉末冶金法的方法成功制备钕铁硼磁性材料。

钕铁硼的出现轰动的世界,于是世界发达国家纷纷投入巨资研究这种新型的稀土永磁材料,1994年,美国通用汽车公司研制出旋喷熔炼法工艺,成功制备出钕铁硼磁铁的技术,标志着钕铁硼磁铁制备技术的成熟,从此这个世界上磁性最强的永久磁铁开始走向市场,并被大规模的运用在军事、医疗器械、高速列车、电子、电力机械、玩具、包装、五金机械、航天航空等领域。

因此钕铁硼具有巨大的市场前景。

而永磁电机则不同,它不会受到专利壁垒的影响,特别是稀土永磁电机,它是70年代初期也就是最近几年才出现的一种新型永磁电机,在技术上西方还处于朦胧阶段,这对安布雷拉公司来说,双方都处于同一起跑线的阶段,如果现在就集中力量对稀土永磁电机的研究,我们就可以早一步占领稀土永磁电机技术制高点,而且稀土永磁电机的工作原理与电励磁同步电机相同,具有运行可靠;体积小,质量轻;损耗小,效率高的特点,因此可以在列车上实现“小马拉大车”的技术难题。

这对公司未来研制高速电力机车奠定了坚实的技术基础,自日本的新干线成功后,世界上的高速列车动力系统被分成了两种,一种是法国为首的采用最前端和最尾端的机车驱动的动力集中式动力设计;一种是日本的全部列车都采用动力分散式设计。这两种动力设计,我们认为日本的动力分散式设计才是高速列车未来的发展方向。

列车动力分散式设计的优点是,列车不但速度快,而且运行稳定,安全性较高,日本新干线运行至今,从来没有发生一起人为致死的事故,被世人列为全球最安全的高速铁路,就可见一斑。反观法国同类的tgv高速列车,由于采用最前端和最尾端的机车驱动的动力集中式设计,摇晃较大、加减速较慢,而且列车速度稍微快了一点,其稳定性和安全就会大打折扣。

从欧洲的电力机车从数据上看,与日本的高速列车在运行时速上相差无几,但由于采用的是最前端和最尾端的机车驱动的动力集中式设计,因此欧洲的高速列车的实际运行速度比日本的高速列车要低很多,他们的高速列车根本就不敢想日本那样放开了跑,因为速度一旦放开。列车运行的危险系数就会大幅增加,没有那个官员敢这么干。”

这两方的争执各有各的道理。理由也足够的充分,而且不管是交流异步电机。还是稀土永磁同步电机都是电力机车未来的发展方向,只不过那瓦利关注是第二代列车牵引系统,陈善新和约翰.马丁等关注的是第三代列车牵引系统,这让凌世哲变得为难起来。

从技术上来讲,交流异步电机发展了近百年,技术上以变得非常成熟,因此更加容易实现,但专利池是一道绕不过去的坎,它横在安布雷拉公司面前。让凌世哲只能站在对岸眼巴巴的望着。向他们购买专利?凌世哲摇了摇头,他们不是决绝,就是提出各种让人无法接受的苛刻要求,这对心高气傲的凌世哲来说,在心里上根本无法接受。

不管不顾?更不可能,安布雷拉不是中国企业,有中国政府为它保驾护航,更有庞大的国内市场做支撑,可以不拿西方的企业的专利当回事。但安布雷拉就不行了,凌世哲要想在西方混,专利就必须重视起来,因此交流异步电机这条路。从根本上算是被堵死了。

研制稀土永磁同步电机?虽然在技术上跟西方国家处于同一起跑线,但永磁同步电机所涉及到的技术却比交流异步电机要复杂得多,最关键的钕铁硼磁性材料。就是个巨大的拦路虎,如果不把这个技术问题解决。稀土永磁同步电机拥有都是空中楼阁。

钕铁硼是什么?钕铁硼是一种以金属间化合物nd2fe14b为基础的永磁材料,简单的说是钕跟氧化铁组成的一种带有强力磁性的合金。又名磁钢。相对于传统的永磁材料,钕铁硼具有极高的磁能积和矫顽力,可吸起相当于自身重量的640倍的重物,因此钕铁硼可谓是当之无愧的“磁王”。

历史上中国第三代高速列车牵引系统能够研制成功,就是因为解决了钕铁硼这一关键性材料。

小说APP安卓版, 点击下载
点击切换 [繁体版]    [简体版]
上一页 章节目录 加入书签 下一页